May 18, 2022
  • Institute of Health Metrix and Evaluations [IHME]. Global burden of disease study 2017. Lancet (2017).

  • Braun, M. M. & Stevens, W. A. Stable coronary artery disease: Treatment. Am. Fam. Physician 97, 376–384 (2018).

    PubMed 

    Google Scholar
     

  • British Heart Foundation. UK Factsheet, 1–21 (British Heart Foundation, 2020).

  • World Economic Forum. The Global Economic Burden of Non-communicable Diseases, Harvard School of Public Health. (2011).

  • Wilkins, E. et al. European Cardiovascular Disease Statistics 2017 edition 192 (European Heart Network, 2017).


    Google Scholar
     

  • Vasan, R. S. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation 113, 2335–2362 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • McQueen, M. J. et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): A case-control study. Lancet 373, 224–233 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 17, 937–952 (2004).

    Article 

    Google Scholar
     

  • Karmali, K. et al. Risk scoring for the primary prevention of cardiovascular disease (review) summary of findings for the main comparison. Cochrane Database Syst. Rev. 1, 1–127. https://doi.org/10.1002/14651858.CD006887.pub4 (2017).

    Article 

    Google Scholar
     

  • Piepoli, M. F. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representative). Eur. J. Prev. Cardiol. 23, 1–96 (2016).


    Google Scholar
     

  • Pries, A. R. et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc. Res. 80, 165–174 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • NICE. Impact Cardiovascular Disease Prevention.

  • Piepoli, M. F. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 37, 2315–2381 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driessen, R. S., Raijmakers, P. G., Stuijfzand, W. J. & Knaapen, P. Myocardial perfusion imaging with PET. Int. J. Cardiovasc. Imaging 33, 1021–1031 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mcmahon, C. G. et al. Diagnostic accuracy of heart-type fatty acid-binding protein for the early diagnosis of acute myocardial infarction. Am. J. Emerg. Med. 30, 267–274 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Navarro-Paredes, C. et al. Diagnostic performance of a combination biomarker algorithm for rule-out of acute myocardial infarction at time of presentation to the emergency department, using heart-type fatty acid-binding protein and high-sensitivity troponin T tests. J. Clin. Exp. Cardiol. 9, 1–9 (2018).


    Google Scholar
     

  • Lockhart, C. J., Hamilton, P. K., Quinn, C. E. & Mcveigh, G. E. End-organ dysfunction and cardiovascular outcomes: the role of the microcirculation. Clin. Sci. 116, 175–190 (2009).

    Article 

    Google Scholar
     

  • Stokes, K. Y. & Granger, D. N. The microcirculation: A motor for the systemic inflammatory response and large vessel disease induced by hypercholesterolaemia?. J. Physiol. 562, 647–653 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Savoia, C. & Schiffrin, E. L. Vascular inflammation in hypertension and diabetes: Molecular mechanisms and therapeutic interventions. Clin. Sci. 112, 375–384 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Abularrage, C. J. et al. Evaluation of the microcirculation in vascular disease. J. Vasc. Surg. 42, 574–581 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Charlton, M., Sims, M., Coats, T. & Thompson, J. P. The microcirculation and its measurement in sepsis. J. Intensive Care Soc. 18, 221–227 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Menaa, F., Khan, B. A., Uzair, B. & Menaa, A. Sickle cell retinopathy: Improving care with a multidisciplinary approach. J. Multidiscip. Healthc. 10, 335–346 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H. et al. Human conjunctival microvasculature assessed with a retinal function imager (RFI). Microvasc. Res. 85, 134–137 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • De Jong, F. et al. Retinal vascular caliber and risk of dementia. Neurology 76, 816–821 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikram, M. K. et al. Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam study. Investig. Ophthalmol. Vis. Sci. 45, 2129–2134 (2004).

    Article 

    Google Scholar
     

  • Ikram, M. K. et al. Retinal vessel diameters and risk of hypertension. Hypertension 47, 189–194 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rim, T. H. et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. Lancet Digit. Heal. 3, e306–e316 (2021).

    Article 

    Google Scholar
     

  • Khansari, M. M. et al. Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images. Biomed. Opt. Express 7, 2597 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brennan, P. F. et al. Assessment of the conjunctival microcirculation in adult patients with cyanotic congenital heart disease compared to healthy controls. Microvasc. Res. 136, 104167 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Brennan, P. F. et al. Assessment of the conjunctival microcirculation for patients presenting with acute myocardial infarction compared to healthy controls. Sci. Rep. 11, 1–9 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cheung, A. T. W. et al. Microvascular abnormalities in sickle cell disease: A computer-assisted intravital microscopy study. Sci. Rep. 99, 3999–4005 (2011).


    Google Scholar
     

  • Wong, T. Y. et al. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam eye study: Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 111, 1183–1190 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 6, 1–17 (2016).

    Article 

    Google Scholar
     

  • Kurth, M. J. et al. Acute kidney injury risk in orthopaedic trauma patients pre and post surgery using a biomarker algorithm and clinical risk score. Sci. Rep. 10, 20005–20005 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brennan, P. F. et al. Cardiac-gated slit lamp videography as a novel approach to assessing a microcirculatory. Netw. R. Vict. Hosp. 44, 1–4 (2017).


    Google Scholar
     

  • Brennan, P. F. et al. Quantitative assessment of the conjunctival microcirculation using a smartphone and slit-lamp biomicroscope. Microvasc. Res. 126, 103907 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jerman, T., Pernus, F., Likar, B. & Spiclin, Z. Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans. Med. Imaging 35, 2107–2118 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Duval-Destin, M. Spatio-temporal wavelet: Appication to the analysis of moving. Prog. Wavelet Anal. Appl. 1, 1–10 (1993).

    MATH 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2021).

  • Koutsiaris, A. G., Tachmitzi, S. V. & Batis, N. Wall shear stress quantification in the human conjunctival pre-capillary arterioles in vivo. Microvasc. Res. 85, 34–39 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kumada, M. et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler. Thromb. Vasc. Biol. 23, 85–89 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Coughlin, C. C. et al. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity 15, 640–645 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Madeira, I. R. et al. Impact of obesity on metabolic syndrome components and adipokines in prepubertal children. J. Pediatr. 85, 261–268 (2009).


    Google Scholar
     

  • Corban, M. T. & Lerman, L. O. Endothelial dysfunction cardiovascular disease pathophysiology hidden in plain sight. Arter. Thromb Vasc. Biol. 7, 1272–1274 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Samady, H. et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124, 779–788 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kandat, T. & Takahashi, T. Interleukin-6 and cardiovascular diseases. Jpn Hear. J 45, 183–193 (2004).

    Article 

    Google Scholar
     

  • Szekely, Y. & Arbel, Y. A review of interleukin-1 in heart disease: Where do we stand today?. Cardiol. Ther. 7, 25–44 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanhaverbeke, M. et al. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin. Cardiol. 41, 1201–1206 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 32, 1141–1143 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, H. C., Patel, V., Chen, J., Rassam, S. M. & Kohner, E. M. Vessel diameter changes during the cardiac cycle. Eye 8, 97–103 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published.