Rising groundwater table due to restoration projects amplifies earthquake induced liquefaction risk in Beijing

0
Rising groundwater table due to restoration projects amplifies earthquake induced liquefaction risk in Beijing
  • Konikow, L. F. & Kendy, E. Groundwater depletion: a global problem. Hydrogeol. J. 13, 317–320 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Qiu, J. China faces up to Groundwater crisis. Nature 466, 308 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Shi, J. et al. Assessment of deep groundwater over-exploitation in the North China plain. Geosci. Front. 2, 593–598 (2011).

    Article 
    MATH 

    Google Scholar 

  • He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shah, T., Molden, D., Sakthivadivel, R. & Seckler, D. The Global Groundwater Situation: Overview Of Opportunities And Challenges (International Water Management Institute, Colombo, Sri Lanka, 2000).

  • Famiglitti, J. S. & Ferguson, G. The hidden crisis beneath our feet. Science 372, 344–345 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Hasan, M. F., Smith, R., Vajedian, S., Pommerenke, R. & Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 14, 6180 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrone, D. & Jasechko, S. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2, 773–782 (2019).

    Article 

    Google Scholar 

  • Zhang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23, 12867–12879 (2016).

    Article 
    MATH 

    Google Scholar 

  • Das, D. K. Environmental impact of inter-basin water transfer projects: some evidence from Canada. Econ. Polit. Week. 41, 1703-1707 (2006).

  • Jain, S. K., Reddy, N. S. R. K. & Chaube, U. C. Analysis of a large inter-basin water transfer system in India. Hydrol. Sci. J. 50, 1 (2005).

    Article 
    MATH 

    Google Scholar 

  • Ghassemi, F. & White, I. Inter-basin water transfer: case studies from Australia, United States, Canada, China and India. (Cambridge University Press, England, 2007).

  • Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Chang. 3, 322–329 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Dong, L., Cao, J. & Liu, X. Recent developments in sea-level rise and its related geological disasters mitigation: A review. J. Mar. Sci. Eng. 10, 355 (2022).

    Article 
    MATH 

    Google Scholar 

  • Okamura, M. & Soga, Y. Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils Found 46, 695–700 (2006).

    Article 
    MATH 

    Google Scholar 

  • Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. & Ali, S. Inducedpartial saturation for liquefaction mitigation: Experimental investigation. J. Geotech. Geoenviron. Eng. 133, 372–380 (2007).

    Article 

    Google Scholar 

  • Ulmer K. J. et al. Next-generation liquefaction database, version 2. next-generation liquefaction consortium. (2023).

  • Hidayat, R. F., Kiyota, T., Tada, N., Hayakawa, J. & Nawir, H. Reconnaissance on liquefaction-induced flow failure caused by the 2018 M W 7.5 Sulawesi earthquake, Palu, Indonesia. J. Eng. Technol. Sci. 52, 51–65 (2020).

    Article 

    Google Scholar 

  • Unjoh, S., Kaneko, M., Kataoka, S., Nagaya, K. & Matsuoka, K. Effect of earthquake ground motions on soil liquefaction. Soils Found 52, 830–841 (2012).

    Article 

    Google Scholar 

  • Long, D. et al. South-to-North Water Diversion stabilizing Beijing’s Groundwater levels. Nat. Commun. 11, 1–10 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Dean, J. L. & Sholley, M. G. Groundwater Basin Recovery In Urban Areas And Implications For Engineering Projects. Engineering Geology For Tomorrow’s Cities (Dublin, Ireland, 2006).

  • Shintani, T. et al. Three-dimensional structure and sources of groundwater masses beneath the Osaka Plain, Southwest Japan. J. Hydrol. -Reg. Stud. 43, 101193 (2022).

    MATH 

    Google Scholar 

  • Bardet, J. P. & Kapuskar, M. Liquefaction sand boils in San Francisco during 1989 Loma Prieta earthquake. J. Geotech. Eng. 119, 543–562 (1993).

    Article 

    Google Scholar 

  • Elgamal, A. W., Zeghal, M. & Parra, E. Liquefaction of reclaimed island in Kobe, Japan. J. Geotech. Eng. 122, 39–49 (1996).

    Article 
    MATH 

    Google Scholar 

  • Shibata, T., Oka, F. & Ozawa, Y. Characteristics of ground deformation due to liquefaction. Soils Found 36, 65–79 (1996).

    Article 
    MATH 

    Google Scholar 

  • Ministry of Land, Infrastructure, Transport and Tourism. Water Information System. Accessed on July 2024 from (2024).

  • Zhang, M., Hu, L., Yao, L. & Yin, W. Numerical studies on the influences of the south‐to‐north water transfer project on groundwater level changes in the Beijing Plain, China. Hydrol. Process. 32, 1858–1873 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Beijing Water Authority. Beijing Water Resources Bulletin 2003–2016 (Beijing Water Authority, Beijing, 2016).

  • Gu, W., Shao, D. & Jiang, Y. Risk evaluation of water shortage in source area of middle route project for south‐to‐north water transfer in China. Water Resour. Manag. 26, 3479–3493 (2012).

    Article 
    MATH 

    Google Scholar 

  • Zhao, Z. Y., Zuo, J. & Zillante, G. Transformation of water resource management: a case study of the South-to-North water diversion project. J. Clean Prod. 163, 136–145 (2017).

    Article 
    MATH 

    Google Scholar 

  • Yong, Y. et al. Simulation of the impact of the south to north water transfer project on groundwater in the Beijing plain. IAHS-AISH publication 342, 88–91 (2011).

    MATH 

    Google Scholar 

  • Wang, X. et al. Fault plane parameters of Sanhe-Pinggu M 8 earthquake in 1679 determined using present-day small earthquakes. Earthq. Sci. 27, 607–614 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zheng, S. & Kahn, M. E. Land and residential property markets in a booming economy: new evidence from Beijing. J. Urban Econ. 63, 743–757 (2008).

    Article 
    MATH 

    Google Scholar 

  • Guo, L. et al. Understanding uneven land subsidence in Beijing, China, using a novel combination of geophysical prospecting and InSAR. Geophys. Res. Lett. 47, e2020GL088676 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ai, X., Sun, B. & Chen, X. Integrated 3D modeling of Quaternary sediments in the Beijing Plain, based on a sequential indicator simulation. Geol. Croat. 72, 3–17 (2019).

    Article 
    MATH 

    Google Scholar 

  • Seed, H. B. & Idriss, I. M. Ground motions and soil liquefaction during earthquakes (Earthquake Engineering Research Institute, Berkeley, California, 1982).

  • Mulilis, J. P., Chan, C. K., Seed, H. B. & Mori, K. Resistance to liquefaction due to sustained pressure. Proc. ASCE 103, 793–797 (1977).

    Google Scholar 

  • Bwambale, B. & Andrus, R. D. State of the art in the assessment of aging effects on soil liquefaction. Soil Dyn. Earthq. Eng. 125, 105658 (2019).

    Article 
    MATH 

    Google Scholar 

  • Cetin, K. O. et al. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 130, 1314–1340 (2004).

    Article 
    MATH 

    Google Scholar 

  • Youd, T. L. & Idriss, I. M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 127, 297–313 (2001).

    Article 
    MATH 

    Google Scholar 

  • Yang, Y., Chen, L., Sun, R., Chen, Y. & Wang, W. A depth-consistent SPT-based empirical equation for evaluating sand liquefaction. Eng. Geol. 221, 41–49 (2017).

    Article 
    MATH 

    Google Scholar 

  • Zhang, Y. F., Wang, R., Zhang, J. M. & Zhang, J. A constrained neural network model for soil liquefaction assessment with global applicability. Front. Struct. Civ. Eng. 14, 1066–1082 (2020).

    Article 
    MATH 

    Google Scholar 

  • Yuan, J. et al. Comprehensive investigation and analysis of liquefaction damage caused by the Ms7. 4 Maduo earthquake in 2021 on the Tibetan Plateau China. Soil Dyn. Earthq. Eng. 155, 107191 (2022).

    Article 
    MATH 

    Google Scholar 

  • Dixit, J., Dewaikar, D. M. & Jangid, R. S. Assessment of liquefaction potential index for Mumbai city. Nat. Hazards Earth Syst. Sci. 12, 2759–2768 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Li, M., Wang, H. & Wang, H. Resilience assessment and optimization for urban rail transit networks: A case study of Beijing subway network. IEEE Access 7, 71221–71234 (2019).

    Article 
    MATH 

    Google Scholar 

  • EN 1998–5. Eurocode 8: Design of Structures for Earthquake Resistance Part 5: Foundations, Retaining Structures and Geotechnical Aspects. (European Committee for Standardization (CEN), Brussels, Belgium, 2004).

  • Yu, M., Xu, Y., Li, Y., Song, Y. & Feng, Z. Spatial and temporal analysis of the influence of groundwater on leakage of urban underground engineering. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 10, 187–192 (2022).

    Article 
    MATH 

    Google Scholar 

  • Hu, J. L. & Liu, H. B. The uplift behavior of a subway station during different degree of soil liquefaction. Procedia engineering 189, 18–24 (2017).

    Article 
    MATH 

    Google Scholar 

  • Zhuang, H., Chen, G., Hu, Z. & Qi, C. Influence of soil liquefaction on the seismic response of a subway station in model tests. Bull. Eng. Geol. Environ. 75, 1169–1182 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • PEER. Pacific Earthquake Engineering Research Center strong motion database. (2024).

  • Kosekt, J., Matsuo, O. & Koga, Y. Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake. Soils Found 37, 97–108 (1997).

    Article 

    Google Scholar 

  • Khoshnoudian, F. & Shahrour, I. Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils. Soils Found 42, 1–8 (2002).

    Article 
    MATH 

    Google Scholar 

  • Chen, R., Taiebat, M., Wang, R. & Zhang, J. M. Effects of layered liquefiable deposits on the seismic response of an underground structure. Soil Dyn. Earthq. Eng. 113, 124–135 (2018).

    Article 
    MATH 

    Google Scholar 

  • Beijing Municipal Commission of Planning and Natural Resources. The plan for the megacity’s rail transit network for 2020-2035 (Beijing Municipal Commission of Planning and Natural Resources, 2022).

  • Manga, M. et al. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Rev. Geophys. 50 (2012).

  • Wang, C. Y. Liquefaction beyond the near field. Seismol. Res. Lett. 78, 512–517 (2007).

    Article 
    MATH 

    Google Scholar 

  • Cox, S. C. et al. Hydrological effects of the Darfield (Canterbury) Mw 7.1 earthquake, 4 September 2010, New Zealand. N. Z. J. Geol. Geophys. 55, 231–247 (2012).

    Article 
    MATH 

    Google Scholar 

  • Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Chen, G., Zhu, J., Qiang, M. & Gong, W. Three-dimensional site characterization with borehole data–a case study of Suzhou area. Eng. Geol. 234, 65–82 (2018).

    Article 
    MATH 

    Google Scholar 

  • Masoud, A. A. & Aal, A. K. A. Three-dimensional geotechnical modeling of the soils in Riyadh city, KSA. Bull. Eng. Geol. Environ. 78, 1–17 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Kim, H. S. & Ji, Y. Three-dimensional geotechnical-layer mapping in Seoul using borehole database and deep neural network-based model. Eng. Geol. 297, 106489 (2022).

    Article 

    Google Scholar 

  • Baecher, G. B. & Christian, J. T. Reliability and Statistics in Geotechnical Engineering. (John Wiley and Sons, West Sussex, England, 2003).

  • Pokhrel, R. M., Kuwano, J. & Tachibana, S. A kriging method of interpolation used to map liquefaction potential over alluvial ground. Eng. Geol. 152, 26–37 (2013).

    Article 
    MATH 

    Google Scholar 

  • Ji, J. & Low, B. K. Stratified response surfaces for system probabilistic evaluation of slopes. J. Geotech. Geoenviron. Eng. 138, 1398–1406 (2012).

    Article 
    MATH 

    Google Scholar 

  • Marinoni, O. Improving geological models using a combined ordinary–indicator kriging approach. Eng. Geol. 69, 37–45 (2003).

    Article 
    MATH 

    Google Scholar 

  • Li, Y., Wang, R., Ma, H. & Zhang, J. M. Code scripts for “Rising groundwater table due to restoration projects amplifies earthquake induced liquefaction risk in Beijing”. Github (2024).

  • Luna, R. & Frost, J. D. Spatial liquefaction analysis system. J. Comput. Civil Eng. 12, 48–56 (1998).

    Article 
    MATH 

    Google Scholar 

  • McKenna, F. & Fenves, G. L. OpenSees manual (PEER Center) ( (2001).

  • Zienkiewicz, O. C., Chan, A. H. C., Pastor, M. & Schrefler, B. A. Computational Geomechanics. (Chichester, Wiley, 1999).

  • Wang, R., Zhang, J. M. & Wang, G. A unified plasticity model for large post-liquefaction shear deformation of sand. Comput. Geotech. 59, 54–66 (2014).

    Article 
    MATH 

    Google Scholar 

  • Liu, H., Zhang, J. M., Zhang, X. & Wang, R. Seismic performance of block-type quay walls with liquefiable calcareous sand backfill. Soil Dyn. Earthquake Eng. 132, 106092 (2020).

    Article 
    MATH 

    Google Scholar 

  • Wang, R., Fu, P. & Zhang, J. M. Finite element model for piles in liquefiable ground. Comput. Geotech. 72, 1–14 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *